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Abstract— It is well known that the recent global warming intensifies the magnitude of 
rainfalls due to the increase in water content in the atmosphere. Therefore, the probability 
of exceeding the previously observed extreme precipitation values also increases with the 
experienced climate change, and forecasting extreme weather events is becoming more 
important. This paper presents a new polynomial regression approach and software 
(PolReg), where future extreme precipitations exceeding all previous observations are 
estimated for each month of year by using prediction bounds with a level of certainty at 
95%. The presented method determines the degrees and coefficients of best-fitting 
polynomials for each precipitation station and forecasts the expected extreme value for 
each month of year by using the determined polynomials. The performance of the method 
is tested by removing and estimating a total of 792 highest observed monthly total 
precipitation values of 66 precipitation stations in Turkey (the highest observation for each 
month of year for each station). The results show that the proposed method and the provided 
software have a high performance and accuracy in estimating future precipitation extremes 
and might be applied in many disciplines dealing with forecasting probable extreme values. 
 
Key-words: forecasting extreme precipitations, polynomial regression, data-driven 
modeling, hydrometeorology, Turkey 
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1. Introduction 

Precipitation is one of the principal atmospheric forcing parameters required for 
hydrologic modeling (Liu and Coulibaly 2011). The forecasting of precipitation 
extremes is becoming more important with the worldwide increase in the 
frequency and intensity of water-related disasters like floods and droughts and 
dwindling water supplies (Baxevani and Wilson 2018; Fowler et al. 2010; Leconte 
et al. 2013; McElroy 2016). These forecasts can provide estimates of probabilities 
of having more (or less) precipitation than certain specified amounts (Unkašević 
et al. 2004). Understanding the variability and forecasting the probable extreme 
values of precipitation are also highly important for the efficient prevention of 
potential natural disasters (Beguería and Vicente-Serrano 2006; Bhatia et al. 
2019; Block and Rajagopalan 2007; Keupp et al. 2019; Tian et al. 2014; Yuan et 
al. 2017). Accurate determination of design rainfall directly influences the 
selection of appropriate dimensions for water structures and prevents loss of lives 
and environmental damage (Zhang et al. 2021). With the impact of climate change 
and abnormal weather caused by the recent global warming, the magnitude of 
precipitation is likely to intensify in most regions of the world as indicated by both 
observations and climate model simulations (Hou et al. 2014; Ibrahim 2019; 
Lazoglou et al. 2019; Li et al. 2019; Rai et al. 2019; Reager and Famiglietti 2009; 
Zhang et al. 2013). For example, Schönwiese et al. (2003) have demonstrated that 
the increase in extreme wet months is reflected in a systematic increase in the 
variance and the Weibull probability density function parameters, respectively. 
Although there is a relative agreement in climate change scenarios about changes 
in extremes, significant differences in the magnitudes of extremes have been 
reported (Kyselý and Beranová 2009; Meena et al. 2019; Zhao et al. 2019). 
Observations indicate that there is a continuous change in the climate (Knox 1993) 
and consequently in the hydrological cycle and associated rainfall patterns (Zhang 
et al. 2009). A study on the changes in flood frequency over paleo-timescales 
demonstrated that the estimated flood exceedance probability can increase quite 
rapidly over time (Porporato and Ridolfi 1998). Due to these reasons, the 
changing character of return periods of precipitation extremes should be 
considered in the hydrological design and water resources management studies 
(Su et al. 2009).  

Hydrologic variables depict a two-dimensional periodic behavior because of 
seasonality associated with the hydrologic cycle (Dikbas 2017a; Dikbas 2017b). 
For example, precipitation generally shows significant variations throughout a 
year, but the observations in the sub-periods (months, seasons, etc.) tend to be in 
a definite range, and alternating trends might be observed for a station in different 
months of the year (Trömel and Schönwiese 2007). In Turkey, minimum 
precipitations are generally observed in the July-September (summer) period 
varying in a low range, while the highest precipitations are mostly experienced 
within the November-January (winter) period. Though precipitation is normally 
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seasonal, its uncertain (Kent et al. 2015), nonstationary, and sometimes chaotic 
behavior (Sivakumar 2000; Sivakumar et al. 1999; Wilks 2012) makes the 
observation, quantification, estimation, and forecasting of precipitation 
challenging (Gao et al. 2017; Schliep et al. 2010; Wang and Lin 2015). The two-
dimensional behavior of precipitation can be observed when the data series are 
placed on a matrix so that each row contains observations for each month (12 
rows). This approach provides significant advantages in data-driven modeling 
studies over the one-dimensional approach and allows obtaining accurate 
modeling results and estimations as in the 3D imputation (Dikbas 2016b), 
frequency-based imputation (Dikbas 2016a; Dikbas 2017b), and two-dimensional 
correlation methods (Dikbas 2017a, 2018a; Dikbas 2018b) which use data located 
on a two-dimensional matrix.  

It can be visually observed that the time series graphs of sorted monthly total 
precipitation series generally depict a nonlinear behavior and the slope of the 
curve always increases towards the higher values. This property of the 
precipitation series was the main reason for the selection of polynomial regression 
as the method for estimating future extreme values. Polynomial regression can be 
used to describe trend curves to model complicated patterns of sorted temporal 
data. Together with its applications on various hydrological data, some studies 
making use of polynomial regression for modeling precipitation also exist in 
literature (Acock and Pachepsky 2000; Adnan et al. 2016; Block and Rajagopalan 
2007; George et al. 2016; Goodale et al. 1998; Hwang et al. 2012; Stefanescu et 
al. 2014; Tian et al. 2014). This study presents a methodology and software for 
reliably estimating expected future extreme monthly total precipitation values 
exceeding all previous observations of a station for each month of the year by 
applying univariate polynomial regression on the observed precipitation values of 
the investigated station itself. The prediction bounds for each monthly series are 
determined by using a 95% confidence level. The observations are located on two-
dimensional matrices where months are in rows. The application of the developed 
method on 66 precipitation observation stations in Turkey has shown that the 
method successfully estimates the removed extreme observations. The extreme 
precipitation values expected with a high occurrence probability in the future were 
also calculated for all months for all stations. The forecasted extreme precipitation 
values have values exceeding all previous observations and provide crucial 
information especially to be considered in water resources management projects. 
The proposed method has a flexible structure in that new observations can be 
easily appended to the existing input dataset, and the best-fitting polynomials 
might be updated accordingly allowing consideration of the non-stationarity of 
the precipitation series. The results obtained for the station 18-003 are reported to 
illustrate the details of the developed methodology as presented in Section 3, and 
the summary of obtained results for all stations are presented in Section 4. 
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2. Study area and data 

The developed method and the provided software were tested on 66 precipitation 
observation stations across 20 different basins in Turkey (Fig. 1). The figure 
shows the average annual precipitation values in Turkey between 1981 and 2010. 
The selected stations represent the majority of the climate and elevation zones and 
cover most of the hydrological basins in Turkey. The climate in Turkey is 
moderately dry with higher average precipitation in the coastal regions. Average 
annual total precipitation varies between 250 mm (Salt Lake region) and 2300 mm 
(Rize region on the coast of the Black Sea). The Black Sea coastline receives 
precipitation throughout the year and the Aegean and Mediterranean coasts are 
wet in winter but dry during the summer seasons.  

 
 
 

 
Fig. 1. Map of 1981–2010 average annual precipitation in Turkey, including the locations of 
the 66 stations used in this study. 
 
 
 
 
The descriptive statistics for all stations, including percentiles and best-

fitting distributions are outlined in Table 1. The majority of precipitation series 
(46/66) fit the Wakeby distribution. The probability distributions for all stations 
are positively skewed and leptokurtic (except for station 21-007) as shown by the 
skewness and excess kurtosis measures. The maximum observations of all stations 
constitute the lower limit for the estimations of the expected next extreme 
precipitation, and the maximum observations vary between 123.0 mm (station  
15-010) and 893.5 mm (station 08-006). 
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Table 1. Descriptive statistics, percentiles, and best-fitting distributions for the first ten 
stations. The complete table for all stations is provided as an online supplement because of 
space restrictions. 

  Station 01-004 01-005 01-008 02-004 02-009 02-011 02-012 03-009 03-013 03-027
  Elevation (m) 90 395 395 35 40 10 180 20 770 240

St
at

ist
ic

 

Sample Size 492 492 480 456 492 468 456 480 528 516
Mean 42.3 54.0 46.4 69.3 77.8 47.2 82.5 46.3 55.6 52.2

Variance 1139 1627 1331 3015 4301 1541 5073 1755 2680 1420
Std. Error 1.52 1.83 1.68 2.60 2.99 1.82 3.39 1.93 2.25 1.69
Skewness 1.11 1.04 1.45 1.18 1.55 1.27 1.66 1.50 1.44 0.78

Excess Kurtosis 1.06 1.01 3.56 2.07 2.76 2.21 4.02 4.14 2.91 0.28

Pe
rc

en
til

es
 

Min 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
5% 1.2 3.0 4.6 4.2 7.0 1.7 4.6 0.0 0.3 1.2

10% 4.6 8.0 7.8 7.8 13.4 4.4 10.2 2.3 2.3 7.7
25% (Q1) 17.0 24.2 18.5 26.8 30.1 17.1 31.8 13.2 15.2 22.6

50% (Median) 33.8 46.1 38.7 56.5 61.8 38.0 64.5 36.2 42.9 46.0
75% (Q3) 60.0 77.9 65.0 101.1 103.3 70.5 114.5 66.8 83.0 74.7

90% 89.6 107.6 93.3 142.0 165.6 98.0 171.1 107.8 129.6 105.0
95% 111.1 134.3 117.6 174.5 211.2 117.8 225.2 123.6 154.3 122.4
Max 170.1 205.0 264.3 365.5 351.0 242.5 476.5 315.9 320.5 184.1

Best-fit Distr. WAK WAK WAK WAK WAK WAK WAK WAK BETA WAK
https://www.dropbox.com/scl/fi/48xw7tbif7qoeiuocqhvh/Table.1.Descriptive.Statistics.an
d.Quantiles.-Full.Version.Supplement.xlsx 

 
 
 

3. Polynomial regression 

Polynomial regression is intrinsically a form of multiple linear regression. The 
polynomial regression model can be expressed as follows: 
 𝑦 = 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 + ⋯+ 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 + 𝜀       
                                       (𝑖 = 1, 2, … ,𝑛) , (1) 

 
where n is the number of observations to which the polynomial function is fit, 

m is the degree of the polynomial to be fit to the observations, yi is the ith element 
of the response vector containing the observations (the dependent variable), aj is 
the coefficients (parameters) of the fitted polynomial (j = 1, 2, … , m), εj is the 
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random error (the difference between the estimation and observation), and  xi is 
the ith element of the vector containing the independent variable. 

Eq.(1) can be expressed in matrix form as follows: 
 

 ⎣⎢⎢⎢
⎡𝑦𝑦𝑦⋮𝑦 ⎦⎥⎥⎥

⎤ = ⎣⎢⎢⎢
⎢⎡𝑥𝑥𝑥⋮𝑥

   𝑥   𝑥   𝑥⋮    𝑥    𝑥  …𝑥  …𝑥  …⋮𝑥  …  𝑥𝑥𝑥⋮𝑥    𝑥    1𝑥    1𝑥    1⋮      ⋮𝑥    1⎦⎥⎥⎥
⎥⎤
⎣⎢⎢⎢
⎡𝑎𝑎𝑎⋮𝑎 ⎦⎥⎥⎥

⎤ + ⎣⎢⎢⎢
⎡𝜀𝜀𝜀⋮𝜀 ⎦⎥⎥⎥

⎤
  . (2) 

 
As shown with the examples below, the sorted precipitation series mostly 

have curved shapes far from being linear and the sections with high precipitation 
values generally have a higher slope than the lower values. The polynomial 
regression method presented in this paper determines the degrees (m) and 
coefficients (a0, a1, … , am) of the polynomials best fitting to the precipitation 
series of a station for each month of the year (12 observation series and 12 
polynomials for each station) with a level of certainty at 95%. The series in each 
month are sorted in ascending order before fitting the polynomial function. Thus, 
in Eq.(2), y1 stands for the minimum and yn stands for the maximum observation 
in an individual month for which the polynomial is being fit. The precipitation 
series are not evaluated as a whole because of the seasonal variations in the 
behavior of precipitation. Therefore, 12 polynomial functions are determined for 
each station. Then, for each month, estimation of the next probable extreme 
precipitation (yn+1) becomes possible by using the determined best-fitting 
polynomial function. The details of the implemented approach are presented 
below for the selected station 18-003 (Uzunpınar) located in the central region of 
Kayseri, Sivas, and Malatya cities. 

4. Results 

4.1. Forecasting extreme precipitation for June for station 18-003 

Estimation of the expected highest monthly precipitation exceeding all the 
previous observations for each month of year is the main aim of the method 
presented in this manuscript. The raw time series data of precipitation generally 
has complicated quantitative and temporal associations as shown in the heatmap 
of the observations of the station 18-003 for the 46 years between 1960 and 2005 
(top panel in Fig. 2). This complicated behavior makes estimation of precipitation 
more challenging than other hydrologic variables like streamflow. When the 
return period is not the primary interest, sorting the observations is one of the 
mostly applied methods for assessing quantitative associations in precipitation 
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observations. Therefore, prior to making estimations of extreme precipitation 
values, all rows containing the observations for each month are sorted in 
ascending order. The bottom panel in Fig. 2 shows the heatmap of the sorted 
precipitation observations of the station 18-003. The sorted values generate 
monotonically increasing series making estimation of the next highest value 
probable by using polynomial regression. The values to be estimated will 
constitute the 47th column in the bottom panel in Fig. 2, and they are calculated 
by separately determining the polynomial equations representing the relationships 
for all the series in the 12 rows of the horizontally sorted data matrix. 
Consequently, 12 polynomials fitting to the sorted precipitation series for each 
month of year are obtained for each station, because there are significant 
differences in the behavior of the precipitation series in view of both expected and 
observed precipitation amounts for each month of year. 
 
 

 
Fig. 2. Heatmaps of the monthly total precipitation observations of station 18-003 (top) and the 
row-wise sorted values (bottom). 

 
 

For finding the best fitting polynomial for each row, the developed PolReg 
software (the link to the freely distributed code of the software is provided at the end 
of the manuscript above the References) fits polynomials from 2nd to 8th degree and 
calculates the performance of each fit by using 11 different statistical measures 
(mean squared error (MSE), normalized mean squared error (NMSE), root mean 
squared error (RMSE), normalized root mean squared error (NRMSE), mean 
absolute error (MAE), mean bias error (MBE), coefficient of correlation (r), 
coefficient of determination (D), coefficient of efficiency (E), maximum absolute 
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error (MaxAE), and mean absolute scaled error (MASE)). The software 
automatically generates plots of all fitted polynomials.  

Fig. 3 shows the plots of the polynomials generated for the sorted observations 
of station 18-003 in the month of June during the 46 years. The blue points are the 
observed values and the grey point on the right of each panel shows the next expected 
value determined by simply calculating the y-value of the function of the fitted 
polynomial corresponding to the 47th observation on the x-axis. The plots in each 
panel show the fitted polynomials starting from the 2nd degree up to the 8th degree. 
The green dashed lines indicate the prediction bounds with a level of certainty at 
95%. This interval indicates that there is a 95% chance that the new observation is 
contained within the lower and upper prediction bounds. 

The highest observed values are out of the prediction bounds of the fitted 
polynomials in the plots for the second- and third-degree polynomials. Also, the 
expected next-extreme precipitations are lower than the highest observed values 
for the second- and third-degree polynomials. Consequently, the plots obtained 
for the polynomials with a degree of 4 and higher fit the sorted series better and 
provide more accurate estimates for the next highest expected precipitation as 
shown in the plots for June.  

The plots of the polynomials do not provide sufficient clues for deciding on the 
best-fitting polynomial. The PolReg software calculates 11 statistical performance 
measures for each fitted polynomial, and the user determines the best-fitting 
polynomial by evaluating the plots and the performance tables together. The software 
generates a results table for each month and summarizes the results of the fitting 
procedure. Table 2 shows the outputs obtained for the month of June. The table 
contains the coefficients of each fitted polynomial (a0 to a8); the maximum 
precipitation value observed in the evaluated month (Max: 107.60 mm for June 
which was observed in 1972); the estimated maximum value by the fitted polynomial 
(EstMax); the expected next highest precipitation forecasted by the fitted polynomial 
(EstNextMax); the upper (PredIntU(n)) and the lower (PredIntL(n)) limits of the 
prediction interval for the estimated maximum precipitation corresponding to the 
observed maximum precipitation, and the upper (PredIntU(n+1)) and lower 
(PredIntL(n+1)) limits of the prediction interval for the expected next maximum 
precipitation. Here, n is the number of observations used for fitting the polynomials 
and making the estimations (n = 46 for the station 18-003). The polynomials from 
the 5th to the 8th degree produced estimates between 106.25 mm and 108.03 mm for 
the observed maximum (which is 107.60 mm for June) and between 122.03 mm and 
127.17 mm for the expected next maximum precipitation. The software also reports 
the statistical performance indicators between the observed values and the fitted 
polynomials. The best performances are indicated with green background and the 
worst performances are indicated with a red background color. For the month of 
June, for the station 18-003, the performance measures point out that the 8th-degree 
polynomial best fits the observations. 
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Fig. 3. Plots of the 2nd to the 8th degree polynomials fitted to the sorted 46-year-long monthly 
total precipitation observations of the station 18-003 in June. 
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In the case of research on extreme values, a function that generally has a 
good fit to most of the observed values but not to the extreme values should not 
be regarded as a good fit. This situation is clearly depicted by the 2nd and 3rd 
degree polynomials which have an r score of 0.954 and 0.975, respectively (scores 
which might be regarded as a high correlation), but they are far from representing 
the extreme values even though they generally have a good fit to the lower 
observations. Therefore, for providing more clues on the best fitting polynomials, 
the software also calculates the 11 statistical performance indicators between the 
highest five observations and the values of the fitted polynomials corresponding 
to the observed extremes and reports them at the bottom section of the output 
table. 

The statistical measures for the extreme values in June indicate that the 7th 
degree polynomial fits best to the observed extremes. Consequently, by looking 
at the plots and the table, it might be concluded that a monthly total precipitation 
value up to 127.17 mm might be expected in June in the station 18-003 with a 
prediction bound between 119.93 mm and 134.42 mm at 95% confidence level. 
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Table 2. Output table summarizing the polynomial fits and statistical measures for the  
46-year-long monthly total precipitation observations of the station 18-003 in June 

JUNE               
Pol.Deg.: 2 3 4 5 6 7 8 

a0 0.0272 0.0026 0.0002 0.0000 0.0000 0.0000 0.0000 
a1 0.3828 -0.1558 -0.0180 -0.0005 0.0000 0.0000 0.0000 
a2 5.1129 3.8600 0.4724 0.0136 0.0007 0.0001 0.0000 
a3   -9.2332 -2.8683 -0.0955 -0.0167 -0.0035 0.0008 
a4     8.1035 1.1139 0.2708 0.0557 -0.0184 
a5       0.9243 -0.7247 -0.3679 0.2493 
a6         3.4269 1.7129 -1.6842 
a7           0.7807 5.7060 
a8             -2.8217 

Max 107.60 107.60 107.60 107.60 107.60 107.60 107.60 
EstMax 80.25 91.30 102.52 106.25 107.25 108.03 107.29 
EstNextMax 83.16 97.51 114.85 122.03 124.53 127.17 123.57 
PredIntU(n) 96.22 103.80 108.46 110.91 111.98 112.84 112.12 
PredIntL(n) 64.29 78.80 96.58 101.60 102.52 103.22 102.45 
PredIntU(n+1) 99.36 110.55 121.37 127.54 130.76 134.42 132.14 
PredIntL(n+1) 66.97 84.47 108.33 116.51 118.30 119.93 115.00 
Goodness of Fit Measures for the Whole Series: 
MSE 49.6702 27.0253 5.4196 2.9826 2.7899 2.6524 2.4943 
NMSE 0.0877 0.0477 0.0096 0.0053 0.0049 0.0047 0.0044 
RMSE 7.0477 5.1986 2.3280 1.7270 1.6703 1.6286 1.5793 
NRMSE 0.2961 0.2184 0.0978 0.0726 0.0702 0.0684 0.0664 
MAE 4.9392 4.2176 1.8697 1.2329 1.2182 1.2013 1.1155 
MBE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
r 0.9541 0.9753 0.9951 0.9973 0.9975 0.9976 0.9977 
d 0.9104 0.9512 0.9902 0.9946 0.9950 0.9952 0.9955 
E 0.9104 0.9512 0.9902 0.9946 0.9950 0.9952 0.9955 
MaxAE 27.3472 16.2979 6.8502 6.3976 5.9546 5.3896 6.0817 
MASE 2.1088 1.8007 0.7983 0.5264 0.5201 0.5129 0.4763 
Goodness of Fit Measures for the Highest 5 Values: 
MSE 213.1992 76.8190 17.1623 11.7163 11.4662 11.4318 12.1024 
NMSE 0.7762 0.2797 0.0625 0.0427 0.0417 0.0416 0.0441 
RMSE 14.6013 8.7646 4.1427 3.4229 3.3862 3.3811 3.4789 
NRMSE 0.8810 0.5288 0.2500 0.2065 0.2043 0.2040 0.2099 
MAE 9.6929 6.7377 3.4075 2.8099 2.7652 2.9008 2.8112 
MBE 9.4325 3.6221 0.4461 0.2509 0.3834 0.5720 0.3786 
r 0.9532 0.9604 0.9691 0.9732 0.9750 0.9771 0.9740 
d 0.9085 0.9223 0.9391 0.9470 0.9506 0.9547 0.9487 
E 0.0298 0.6504 0.9219 0.9467 0.9478 0.9480 0.9449 
MaxAE 27.3472 16.2979 6.8502 6.3976 5.9546 5.3896 6.0817 
MASE 0.9916 0.6893 0.3486 0.2875 0.2829 0.2968 0.2876 
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4.2. Model validation 

The exceedance probabilities for the observed and estimated highest values 
of the station 18-003 for each month are calculated by using the best-fitting 
distributions (Table 3). The parameters of the best fitting distributions and the 
probabilistic estimates determined by using the inverse cumulative distribution 
function for p=1– (1/46) = 0.97826 are also presented for a comparison of 
expected and experienced observations for the investigated period. EasyFit 
software was used for deciding the best fitting distributions. The used software 
makes goodness of fit tests according to the Kolmogorov-Smirnov, Anderson-
Darling, and chi-squared tests. The software supports 55 continuous and discrete 
distributions and sorts the tested distributions according to their scores in the 
goodness of fit tests. The distribution with the highest scores is regarded as the 
best fitting distribution. Then, the exceedance probabilities are calculated based 
on the parameters of the best-fitting distribution. It must not be forgotten that the 
return period of any observed extreme event is not equal to the investigated period, 
because the observed extreme might always have a much longer (or even shorter) 
return period. The selected observation period and the observed extremes should 
never be regarded as dependent variables. This situation is also pointed out by the 
exceedance probabilities determined for the observations used in this study, where 
the exceedance probabilities are very low for some months, even though all of the 
highest values were experienced within the investigated 46-year period. For 
example, the exceedance probabilities of the observed extremes for five months 
(March, June, July, September, and November) vary between 1% and 1.3% based 
on the best-fitting distributions. The exceedance probabilities calculated for the 
forecasted future extreme precipitations provide clues about the probable return 
periods of extreme events. Even though the return periods for some forecasts seem 
to be long, the experienced extreme values in the evaluated period show that the 
forecasted future extremes are not far from that being expected. 

As another method applied for testing the performance of polynomial 
regression in the estimation of the observed highest values, all highest observed 
values for each month of year in each dataset (12 values for each station and a 
total of 792 extremes) were removed from the datasets, and polynomial regression 
was used for estimating the removed extremes. An output table was also generated 
for the calculations (Table 4) presenting the results for June for the station 18-003 
after the highest value observed in June 1972 (107.60 mm) was removed from the 
dataset. 

The results obtained by the best fitting 2nd and the 3rd degree polynomials 
were again far from forecasting the deliberately removed extreme value, but the 
5th to the 8th degree polynomials all produced forecasts close to the removed 
value (104.62 mm to 109.38 mm), and the removed value is within the prediction 
intervals of the 5th to the 8th-degree polynomials. The software does not know 
the value of the removed extreme during the estimation process. 
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Table 3. Exceedance probabilities for the observed highest precipitations and estimated 
future extremes of the station 18-003 for each month of year 

  Best-Fitting 
Distribution X1* X(P=0.98) P(X>X1) X2* P(X>X2) 

January Log-Pearson 3 73.9 77.2 0.024 81.6 0.019 
February Inv. Gaussian (3P) 60.7 56.6 0.016 77.8 0.005 
March Wakeby 69.4 69.0 0.021 74.1 0.009 
April Johnson SB 109.1 100.8 0.011 129.7 0.001 
May Fatigue Life (3P) 154.5 147.8 0.018 186.9 0.007 
June Dagum 107.6 91.4 0.010 123.6 0.006 
July Gen. Extreme Value 109.0 75.1 0.011 157.0 0.006 
August Gen. Pareto 38.6 36.1 0.019 46.0 0.013 
September Gen. Pareto 72.5 62.1 0.012 94.2 0.003 
October Wakeby 82.0 78.0 0.017 88.8 0.010 
November Wakeby 63.5 58.0 0.013 72.7 0.006 
December Gen. Extreme Value 85.1 87.1 0.023 89.3 0.020 

*X1: Highest observation; X(p=0.98): The probabilistic estimate determined by using the 
inverse cumulative distribution function for p=0.97826; X2: Forecasted extreme 
precipitation 

 
 
 
 

Table 4. Output table summarizing the polynomial fits and the statistical measures for the 
month of June for station 18-003 after 12 highest observations for each month are removed 
from the input data 

JUNE        

Pol.Deg.: 2 3 4 5 6 7 8 
a0 0.0176 0.0020 0.0002 0.0000 0.0000 0.0000 0.0000 
a1 0.7431 -0.1175 -0.0162 -0.0005 0.0000 0.0000 0.0000 
a2 2.9390 3.2557 0.4245 0.0111 0.0005 0.0001 0.0000 
a3  -7.2179 -2.4289 -0.0553 -0.0140 -0.0042 0.0009 
a4   7.1456 0.8672 0.2423 0.0670 -0.0206 
a5    1.3130 -0.5971 -0.4583 0.2747 
a6     3.2714 2.0250 -1.8428 
a7      0.4715 6.1469 
a8       -3.1902 

Max 95.10 95.10 95.10 95.10 95.10 95.10 95.10 
EstMax 71.93 79.70 88.91 91.90 92.66 93.47 92.73 

EstNextMax 74.27 84.42 98.79 104.62 106.58 109.38 105.72 
PredIntU(n-1) 84.48 90.29 94.37 96.56 97.46 98.34 97.63 
PredIntL(n-1) 59.37 69.12 83.44 87.23 87.86 88.59 87.83 
PredIntU(n) 87.01 95.49 104.81 110.18 112.96 116.82 114.56 
PredIntL(n) 61.53 73.36 92.77 99.06 100.20 101.94 96.87 
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Table 4. Contimued 

Pol.Deg.: 2 3 4 5 6 7 8 
Goodness of Fit Measures for the Whole Series: 

MSE 30.5169 19.2320 4.5448 2.9596 2.8440 2.6943 2.5366 
NMSE 0.0673 0.0424 0.0100 0.0065 0.0063 0.0059 0.0056 
RMSE 5.5242 4.3854 2.1318 1.7204 1.6864 1.6414 1.5927 

NRMSE 0.2595 0.2060 0.1001 0.0808 0.0792 0.0771 0.0748 
MAE 3.9968 3.4997 1.7008 1.2483 1.2448 1.2084 1.1288 
MBE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

r 0.9649 0.9781 0.9949 0.9967 0.9968 0.9970 0.9971 
d 0.9311 0.9566 0.9897 0.9933 0.9936 0.9939 0.9943 
E 0.9311 0.9566 0.9897 0.9933 0.9936 0.9939 0.9943 

MaxAE 23.1737 15.3962 6.1934 5.7482 5.7831 5.5643 6.0303 
MASE 1.8930 1.6575 0.8055 0.5912 0.5896 0.5723 0.5346 

Goodness of Fit Measures for the Highest 5 Values: 
MSE 127.2844 52.8151 13.8332 11.1934 11.3853 11.7789 12.1521 

NMSE 0.7347 0.3048 0.0798 0.0646 0.0657 0.0680 0.0701 
RMSE 11.2820 7.2674 3.7193 3.3456 3.3742 3.4320 3.4860 

NRMSE 0.8571 0.5521 0.2826 0.2542 0.2564 0.2607 0.2648 
MAE 8.4804 4.7540 3.1171 2.7116 2.8329 2.9437 2.9430 
MBE 7.0343 3.0175 0.5262 0.4096 0.5197 0.7180 0.5309 

r 0.9458 0.9506 0.9569 0.9597 0.9609 0.9632 0.9591 
d 0.8945 0.9037 0.9157 0.9210 0.9234 0.9277 0.9200 
E 0.0817 0.6189 0.9002 0.9192 0.9179 0.9150 0.9123 

MaxAE 23.1737 15.3962 6.1934 5.7482 5.7831 5.5643 6.0303 
MASE 0.9475 0.5312 0.3483 0.3030 0.3165 0.3289 0.3288 

 
 
 

4.3. Forecasting the extreme values for the remaining 65 precipitation stations 

The above discussion was generated based on estimations and observations for a 
single station (18-003). A method’s ability to estimate values for a single station 
is not sufficient to claim that it will be successful in estimating values for other 
data series. To test the success of the application of the proposed polynomial 
regression approach across multiple stations, the presented software was used to 
estimate extreme precipitation values for 66 stations across Turkey. For each 
station, expected future extreme precipitations were estimated for each month, 
and the performance of polynomial regression was tested by estimating the 
removed extremes (a total of 792 observed extremes) as explained above. The 
scatterplots between the forecasts of the future extremes and the observed 
maximums for the investigated 65 stations (01-004 to 26-005) are provided as an 
online supplementary material (Fig. S1). The link to the online supplement is at 
the end of the manuscript above the References. 
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The success of polynomial regression in forecasting extremes might only be 
validated when the expected precipitations occur in real life, but testing the 
performance by removing and estimating the observed extremes has been used in 
literature as a reliable practice. The scatterplots and the correlations between the 
removed observed highest precipitation values and the estimations of the fitted 
polynomial functions show that the presented method is very successful in 
approximating the removed precipitation values with high accuracy. The 
closeness of the points in the scatterplots to the straight diagonal y = x line (not 
shown in the figures) is an indicator of the estimation performance; the closer the 
points to the y = x line are, the higher the performance is. 

The figures show that the majority of the estimations are very close to the 
observations as it is indicated also by the correlations. 80.3% (53/66) of the 
correlations are over 0.9, while 65.2% (43/66) are over 0.95, and 15.2% (10/66) 
are over 0.99. The highest correlation (0.998) was obtained for station 03-027 and 
the lowest correlation (0.554) was observed for the station 01-004. In addition to 
correlation, the RMSE, NRMSE, E, and MAE measures between the removed and 
estimated precipitations are also calculated for all stations (Table 5). The values 
are calculated for the removed and forecasted 12 values for each month of year 
for each station as shown in the scatterplots in the supplementary materials. 

 
 
 
Table 5. Statistical performance measures for the forecasts of the removed highest 
observations for the first ten stations. The complete table for all stations is provided as an 
online supplement because of space restrictions. 

STATION 01-004 01-005 01-008 02-004 02-009 02-011 02-012 03-009 03-013 03-027 

r 0.554 0.921 0.794 0.979 0.963 0.928 0.969 0.974 0.995 0.998 
RMSE 29.592 16.897 21.283 24.045 27.685 23.139 30.992 24.823 8.137 2.111 

NRMSE 0.233 0.120 0.149 0.126 0.112 0.164 0.131 0.166 0.050 0.015 
NSE -0.434 0.824 0.365 0.894 0.872 0.795 0.910 0.856 0.988 0.994 
MAE 13.389 6.935 13.090 16.963 17.728 11.805 19.750 14.334 5.631 1.644 

https://www.dropbox.com/scl/fi/n7yd7jos4x00e0cgenh44/Table.5.Performance.Measures.-
Full.Version.Supplement.xlsx 
 
 
Fig. 4 shows the annual averages of the observed and estimated 

precipitations together with the differences between observations and estimations. 
In the annual scale, highest future precipitation increases are expected in the 
southern and northwest shoreline regions. Figures for the monthly observations, 
estimations, and differences are presented as an online supplement in Figs. S2-
S13. Those figures clearly show the expected variation of precipitation throughout 
the seasons.  
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Fig. 4. Annual averages of the observed precipitation, the estimated higher precipitation, and 
the difference between the observed and the estimated higher precipitation. 
 
 
 
In the winter months, extreme precipitation is mostly expected in the western 

half of the country, while the southern half has a risk of extreme precipitation in 
spring. Then, in summer, the extreme precipitation expectation moves toward the 
eastern half of the country, and finally, in autumn months, the northern half of the 
country seems to be prone to extreme precipitation. These findings fit well with 
the previously observed extremes showing a rotating motion over the country 
through the seasons. 

Even though polynomials of a given degree provide an advantage in allowing 
the data to determine the fitted model in a somewhat more flexible way, 
polynomial regression sometimes suffers from various drawbacks. One 
disadvantage is that individual observations can exert an influence on remote parts 
of the curve (Green and Silverman 1993), and the polynomial regression may 
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suffer from severe extrapolation problems. It is also well-known that a polynomial 
with a higher order may fit the data better, but it may produce very weird 
estimators, especially for extrapolation. 

In the presented case, the scatterplots show that a few highly unexpected 
precipitation values cause the decreases in correlations. For example, for station 
01-004, the highest August precipitation was 149.3 mm (the 4th highest 
observation of the station among 492 observations), while all the remaining 40 
August observations are under 44 mm. This very high precipitation value 
observed in summer was underestimated by all the fitted polynomials, and the 
correlation value decreased. Another difficulty in polynomial regression is that 
the model elaboration implicit in increasing the polynomial degree cannot be 
controlled continuously (Green and Silverman 1993). Therefore, the users of the 
presented method and software should be warned that some very rare extreme 
values might influence the performance of the model negatively, and both the 
statistical validations and the graphical outputs should be checked comparatively, 
especially for extremely rare cases. If these shortcomings of polynomial 
regression are experienced at an unacceptable rate in future uses, then the users 
might consider some sophisticated models, including local linear regression and 
penalized regression, which regulate the smoothness of the estimated mean 
structure but have their shortcomings like collinearity, sparsity, curse of 
dimensionality, and biased coefficient estimates.  

The estimation performance of the presented method is directly associated 
with the amount and quality of the available data as it has a data-driven 
methodology. Therefore, it is expected that an even better performance should be 
expected when the data covers a longer range of observations and contains more 
information about the behavior of precipitation. An advantage of the method is 
that the best-fitting polynomials might be updated always as new observations are 
made. This approach allows consideration of the non-stationary structure of 
precipitation time series and provides a better opportunity for forecasting record 
values. A worldwide increase is reported in extreme precipitation values with the 
influence of global warming causing increased temperatures and 
evapotranspiration even in locations with decreasing precipitation trends. 
Consequently, there is an increasing requirement for alternative methods of 
estimating precipitation extremes showing extensive increases in frequency.  

5. Conclusions 

The method presented in this paper uses polynomial regression to forecast the 
most probable future monthly total precipitation exceeding all the previously 
observed precipitations for each month of the year. The method is applied to 
observations of 66 precipitation stations in Turkey. The results show that 
polynomial regression applied for the first time in literature with an approach as 
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presented in this paper can estimate expected precipitation extremes with high 
accuracy at a 95% confidence level. This result was obtained by removing and 
estimating the highest observed precipitations for each month of year for all 
stations. It is anticipated that the presented methodology and software might 
contribute to the overall improvement in the skill of forecasting extreme 
precipitation and other variables with similar behavior. Knowing probable future 
extreme precipitation values and their locations will allow us to take precautions 
against hazards in areas likely to experience these extremes, and loss of lives and 
property will hopefully be prevented. 

The polynomial regression software developed for implementing the method 
is provided freely together with this manuscript. The software is distributed under 
the terms of the GNU General Public License version 3, and a copyright notice is 
provided at the beginning of the code. 
 
Data Availability Statement: 
Due to confidentiality agreements, supporting data can only be made available to bona fide 
researchers subject to a non-disclosure agreement. Details of the data and how to request access 
are available at https://www.turkiye.gov.tr/devlet-su-isleri-hidrometrik-veri-talebi. 
 
Link to the online supplement containing Figures S1-S12: 
https://www.dropbox.com/scl/fi/9ka40g5fsfiliakszifdt/Forecasting-Extreme-Precipitations.-
Supplement.docx 
 
Link to the code of PolReg software: 
https://www.dropbox.com/scl/fi/iq3t8y3we3tikq8nmps79/PolReg.m 
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